Yu Zhang,Zongxi Han,Huixin Li,Shengwang Liu
Viral Immunol.2023 Oct 30.doi: 10.1089/vim.2023.0049.Online ahead of print.
Abstract
Infectious bronchitis virus (IBV), a gammacoronavirus within the Coronaviridae family, is an economically important etiological disease agent in chickens. Both early diagnosis and determination of the immune status of chickens are important for controlling IBV outbreaks in chicken flocks. The N protein is the most abundantly expressed virus-derived protein during IBV infection and can induce a strong immune response by producing antibodies during early infection or immunization. In this study, we found that the amino acid sequences of the N protein between CK/CH/LJL/04I and the other 22 IBVs were conserved, especially in the 1-160 amino acid region. Based on the sequence similarities, the three recombinant proteins, rN160 (amino acid positions 1-160), rN266 (144-409), and rN409 (1-409), were expressed using the Escherichia coli system and subsequently purified. The results demonstrated that the antigenicity and reactivity of rN160 were better than those of rN266 and rN409. As a result, an indirect enzyme-linked immunosorbent assay (ELISA) (rN160 ELISA) was developed to detect the IBV antibody based on the rN160 protein. Using 1,500 clinical field serum samples, the relative sensitivity, specificity, and accuracy of the rN160 ELISA were 98.97%, 92.34%, and 97.93%, respectively, compared to those of a commercial ELISA kit (IDEXX), indicating a strong positive correlation between the two methods. Taken together, these results reveal that the rN160 ELISA is a rapid, simple, and sensitive method for detecting group-specific IBV antibodies for epidemiological investigation and antibody-level monitoring.
Keywords: ELISA; infectious bronchitis virus; nucleocaspid protein; recombinant antigen.