当前位置: 首页» 科研进展» 最新论文

最新论文

Characterization of the novel optrA-carrying pseudo-compound transposon Tn7363 and an Inc18 plasmid carrying cfr(D) in Vagococcus lutrae.J Antimicrob Chemother.2022 Jan 17;dkab478.doi: 10.1093/jac/dkab478

Yao Zhu,Wenlin Yang,Stefan Schwarz,Qiu Xu,Qin Yang,Lingli Wang,Siguo Liu,Wanjiang Zhang


J Antimicrob Chemother.2022 Jan 17;dkab478.doi: 10.1093/jac/dkab478. Online ahead of print.


Abstract

Objectives: To investigate the genetic context and transferability of the oxazolidinone resistance genes cfr(D) and optrA in a porcine Vagococcus lutrae isolate.

Methods: V. lutrae isolate BN31 was screened for the presence of known oxazolidinone resistance genes via PCR assays. Conjugation experiments were carried out to assess horizontal transferability of resistance genes. WGS was performed using a combination of Nanopore MinION and Illumina HiSeq platforms. Detection of a translocatable unit (TU) was conducted by PCR.

Results: V. lutrae isolate BN31 harboured the oxazolidinone resistance genes cfr(D) and optrA. The optrA gene, together with the phenicol resistance gene fexA, was located on a novel pseudo-compound transposon, designated Tn7363. Tn7363 was bounded by two copies of the new insertion sequence ISVlu1, which represented a new member of the ISL3 family. A TU, comprising one copy of ISVlu1 and the segment between the two IS elements including the optrA gene, was detected. The cfr(D) gene and an erm(B) gene were identified on the broad-host-range Inc18 plasmid pBN31-cfrD, a pAMβ1-like plasmid. Similar to plasmid pAMβ1, plasmid pBN31-cfrD was conjugative.

Conclusions: To the best of our knowledge, we report the first identification of the cfr(D) and optrA in Vagococcus. Two novel oxazolidinone resistance gene-carrying mobile genetic elements, Tn7363 and pBN31-cfrD, were identified in V. lutrae BN31. Considering their transmission potential, attention should be paid to the risk of transfer of the optrA and cfr(D) genes from V. lutrae to clinically more important bacterial pathogens.

© The Author(s) 2022. Published by Oxford University Press on behalf of British Society for Antimicrobial Chemotherapy. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.


扫一扫 关注我
网站首页 联系我们
TOP