Yuejun Shi,Lei Shuai,Zhiyuan Wen,Chong Wang,Yan Yuanyuan,Zhe Jiao,Fenglin Guo,Zhen F. Fu,Chen Huanchun,Zhigao Bu &Guiqing Peng
Emerg Microbes Infect. 2021 Mar 11;1-43.doi: 10.1080/22221751.2021.1899770. Online ahead of print.
Abstract
The unprecedented coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a serious threat to global public health. Development of effective therapies against SARS-CoV-2 is urgently needed. Here, we evaluated the antiviral activity of a remdesivir parent nucleotide analog, GS441524, which targets the coronavirus RNA-dependent RNA polymerase enzyme, and a feline coronavirus prodrug, GC376, which targets its main protease, using a mouse-adapted SARS-CoV-2 infected mouse model. Our results showed that GS441524 effectively blocked the proliferation of SARS-CoV-2 in the mouse upper and lower respiratory tracts via combined intranasal (i.n.) and intramuscular (i.m.) treatment. However, the ability of high-dose GC376 (i.m. or i.n. and i.m.) was weaker than GS441524. Notably, low-dose combined application of GS441524 with GC376 could effectively protect mice against SARS-CoV-2 infection via i.n. or i.n. and i.m. treatment. Moreover, we found that the pharmacokinetic properties of GS441524 is better than GC376, and combined application of GC376 and GS441524 had a synergistic effect. Our findings support the further evaluation of the combined application of GC376 and GS441524 in future clinical studies.
Keywords: SARS-CoV-2; antiviral efficacy; combined application; mouse model; preclinical inhibitor.