Tao Di, Ran Zhao, Qiankai Shi, Fangfang Wang, Zongxi Han, Huixin Li, Yuhao Shao, Junfeng Sun, Shengwang Liu
Viruses. 2025 Jul 13;17(7):977. doi: 10.3390/v17070977.
Abstract
Newcastle disease virus (NDV) genotype VI from pigeon origin is an important causative agent for serious disease in pigeons. Although the biological characteristics of genotype VI NDV have been extensively studied, the understanding of the thermostability of this genotype is still incomplete. In this study, an NDV strain, designated P0506, was isolated from a diseased pigeon in China and classified as genotype VI. Phylogenetic analysis on the basis of the Fusion gene coding sequence indicated that P0506 belonged to sub-genotype VI.2.1.1.2.2 of class II. The thermostability may be a universal characteristic of genotype VI NDV. Thus, the thermostability of two strains, including P0506 identified in this study and P0713 identified previously, belonging to VI.2.1.1.2.2, and another previously isolated strain, P0813, in VI.2.1.1.2.1, was investigated. It was indicated that all three viruses presented resistance to heat treatment, but P0713 was more robust than P0813 and P0506. By constructing a series of HN protein mutants, amino acid residues at both residues 365 and 497 in HN protein were found to be involved in the heat resistance. Furthermore, the effects of residues 365 and 497 in HN protein on the thermostability of the virus were further evaluated by using recombinant viruses generated by the reverse genetic system. Our results showed that residue at position 365 in HN protein was the key thermostable determinant of sub-genotype VI.2.1.1.2.2 NDV. These findings will help us better understand the thermostable mechanism of NDV and serve as a foundation for the further development of novel thermostable vaccines.
Keywords: Newcastle disease virus; genotype VI; hemagglutinin–neuraminidase; thermostability.